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Abstract The diet of Leptobotia elongata in the Yibin
reach of the Yangtze River, China was investigated by
stomach content analysis and by stable isotope analysis
frommuscle. The results of the two methods were agree-
ment. Both stomach contents and isotope analysis indi-
cated that L. elongata fed in spring mainly on plankton,
shrimp and fish, and secondarily on benthic invertebrates
and aquatic insect larvae. For the stomach content anal-
ysis, the diet composition showed significant differences
among the size classes in relative weight of prey items,
with L. elongata changing feeding habits at c.110 mm
standard length. The smaller individuals fed on benthic
invertebrates and aquatic insect larvae, whereas individ-
uals >109 mm fed mainly on shrimp and fish. A similar

shift to piscivory at c.110 mm standard length was found
using the stable isotope mixing model to reveal dietary
ontogeny by IsoSource software, and the trend in varia-
tion of the δ13C and δ15N was similar with increased
body length, and the plankton is important prey item in
all size classes. The δ13C and δ15N values in similar
sized individuals showed significant seasonal differences
(δ13C, ANOVA, F=76.33, p<0.001 and δ15N, ANOVA,
F=144.56, p<0.001), indicating a temporal dietary and
trophic level shift. L. elongata is an important commer-
cial species, and the results of the study form part of a
detailed investigation of feeding ecology of L. elongata
that provides basic data for studying the food web of the
upper Yangtze River.

Keywords Leptobotia elongata . Dietary shift . Body
length . Season . Stomach contents . Stable isotope

Introduction

Leptobotia elongata is a benthic freshwater fish endem-
ic in the upper reaches of the Yangtze River, China
(Anonymous 1976; Chen 1980; Liang 2000). It is the
largest species of Cobitidae in the world, reaching to
3 kg (Ding 1994), mainly inhabiting the river’s middle
stretch (Ku 1999). In recent years, L. elongata popula-
tions have declined greatly due over-fishing and to
environmental deterioration, including the destruction
of spawning grounds and prey (Le and Chen 1998;
Sun et al. 2010). L. elongata was classified as a
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vulnerable species by the Endangered Species Scientific
Commission in China in 1998 (Le and Chen 1998). The
annual catch was 10 000 kg prior to the 2000s, but has
decreased to no more than 2000–3000 kg per year in
recent years (Duan et al. 2008). L. elongata is an im-
portant commercial species in the Yibin reach of the
upper Yangtze River in spring, but difficult to catch in
other seasons (Li et al. 2013). It has considerable orna-
mental value. Recovery of L. elongate populations re-
quires augmentation of stock through release of fish into
the upper Yangtze River. A stocking program has been
in place since 2010, supported by the China Three
Gorges Corporation, the largest water conservation and
hydropower facility in China.

Dietary shifts are a common phenomenon of the early
life of many fish species (Eloranta et al. 2010) and are
usually the result of morphologic constraints, migration,
or change in habitat (Grey 2001). Thus far, most studies
of L. elongata have concentrated on its taxonomy and
reproductive biology. Information regarding the feeding
strategies of the species, particularly in the Yibin reach of
the Yangtze, is scarce. Studies of L. elongata conducted
in the Yichang reach in 1999 used percent frequency of
occurrence in stomach content to evaluate ontogenetic
shifts in diet (Ku 1999). The distance from Yibin reach to
Yichang reach is approximately 1040 km. Research on
the dietary shifts of L. elongata is important to improve
understanding of its trophic ecology to contribute to its
management and conservation.

The goals of the present study were (1) to describe
the diet of the L. elongata on the Yangtze River, (2) to
characterize ontogenetic dietary changes by stomach
content analysis and stable isotope analysis, and (3) to
investigate seasonal variations in the diet of the
L. elongata by the stable isotope technique. The study
forms part of a detailed investigation of feeding ecology
of L. elongata, and will provide basic data for studying
the food web of the upper Yangtze River. The results
may also provide information for management plans of
rare and endemic fish species in the National Nature
Reserve of the upper reaches of the Yangtze River.

Materials and methods

Study area

The area of the Upper Yangtze above Yichang is an
exceptional ecosystem with unique geology,

topography, and climate, with up to 286 fish spe-
cies. Construction of the Three Gorges Dam cre-
ated a reservoir in a stretch of approximately
600 km from Yichang to Chongqing. The
National Nature Reserve for rare and endemic fish
species in the upper reaches of the Yangtze River
was established in 2005 and includes the main
stream of the Yangtze between Xiangjiaba Dam
and Masngxi Bridge at Chongqing (approximately
387 km) (Wei 2012). Annual mean air temperature
is 18 °C, and a flood period extends from June
through October (Wei 2012). The present study
was conducted from Nanguang to Nanxi reach in
Yib i n r e a ch (28 °45 ’50^ t o 28 °48 ’17^N,
104°39’35^ to 104°57’11^E), located below the
junction of the Jinshajiang and Minjiang Rivers
in the central area of the reserve (Fig. 1), which
includes spawning grounds of L. elongata (Zhao
1995). And L. elongata is an important commer-
cial fish in Yibin reach, representing 3.16 % of
fish harvested annually and 9.53 % of the annual
harvest by weight (Li et al. 2013).

Sample collection

A total of 427L. elongata specimens were collect-
ed by fishermen with drift gill nets from
Nanguang to Nanxi reach in the Yibin reach of
the upper Yangtze River (Fig. 1) in spring (April)
2012, n=413; summer (July) 2012, n=5; autumn
(October) 2012, n=5; and winter (January) 2013,
n=4. Fish were weighed to the nearest 0.1 g, and
body length (standard length) was measured to the
nearest 1.0 mm. The 413 specimens captured in
spring were used to analyze dietary shift in ontog-
eny by stomach content, and 67 of those were
used for analysis of dietary shift by stable isotope
in spring according to different body length of the
L. elongata, and the grouping of the body length
for the stable isotope analysis was consistent with
the stomach content. Nineteen specimens collected
throughout the year with drift gill nets (spring, n=
5; summer, n=5; autumn, n=5; winter, n=4) were
used to analyze seasonal variation in diet.

Stomach content analysis

Immediately after their collection, individuals were eu-
thanized, and stomachs were dissected and placed in
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10 % buffered formalin until processing. In the labora-
tory, stomach contents were separated using a dissecting
microscope, and the food items were identified to the
lowest possible taxonomic level using standard taxo-
nomic keys (Ding 1994; Liang et al. 1996; Zhao 2005;
Zhou and Chen 2011). Items of each identified taxon
were counted, and wet mass of each prey item was
weighted to the nearest 0.1 mg by electronic analytical
balance for per stomach. Food items were grouped into
eight categories to reduce error caused by comparisons
among taxonomic levels (Cortés 1997): fish, shrimp,
gammarid, mollusk, benthic invertebrates, aquatic insect
larvae, plankton, and phytodetritus. prey compositions
were expressed as a percentage weight (W%) and per-
centage numerical composition (N%), and percentage
frequency of occurrence (F%) of a prey item in
stomachs with prey was calculated (Hyslop 1980). The
index of relative importance (IRI, Pinkas et al. 1971)
was also calculated as follows: IRI = (W% + N%)F%.
Fish that had regurgitated, had food in the mouth or
pharynx, and those with slack, thin-walled empty
stomachs were excluded from the analysis. Because of
the difficulty in capturing larger individuals of
L. elongata (Wei 2012; Li et al. 2013), the number of
individuals of body length >229 mm obtained in this
study was not sufficient for stomach content analysis.
L. elongatawere grouped into eight body length classes,
(70–89 mm, 90–109 mm, 110–129 mm, 130–149 mm,
150–169 mm, 170–189 mm, 190–209 mm, and 210–
229 mm), where selection was based on available stom-
ach contents data. Unidentifiable food items were ex-
cluded from further analysis (Schafer et al. 2002).

Stable isotope analysis

Muscle tissue was removed from the dorsal-anterior
section of the body immediately after capture and stored
at −20 °C until use. Each sample was oven dried at
60 °C for 48 h and ground to a fine homogeneous
powder using a mortar. Sixty-seven specimens captured
in April were separated into 11 size classes: 70–89 mm,
n=5; 90–109 mm, n=10; 110–129 mm, n=9; 130–
149 mm, n=7; 150–169 mm, n=6; 170–189 mm, n=
8; 190–209 mm, n=6; 210–229 mm, n=5; 230–
249 mm, n=3; 250–269 mm, n=3; and >270 mm, n=
5. The grouping of size classes for stable isotope anal-
ysis was partially consistent with the grouping of size
classes for stomach content analysis. Leptobotia
elongata is difficult to capture except in spring, so no
analysis of dietary shift was conducted in other seasons.

Potential L. elongata food items were collected in
April. Plankton was collected using a 30 cm diameter
net (64 μmmesh) at the surface for 10 min. Six samples
were filtered through pre-combusted fiberglass filters
(Whatman GF/C) (450 °C, 4 h) for isotopic analysis,
and 6 additional samples were used for species identifi-
cation by microscopy. The major phytoplankton species
were Bacillariophyta, Euglenophyta, Chlorophyta,
Pyrrophyta, Cyanophyta, and Cryptophyta, and zoo-
plankton Copepoda, Cladocera, Protozoa, and rotifers.
A single dominant shrimp species, Macrobrachium
nipponense, and small fish were also collected. The
shrimp were dissected and the soft tissue was used for
isotopic analysis. Aquatic insect larvae, gammarid, and
organic detritus were collected with dip nets. Benthic

Fig. 1 a location of Yibin reach in the Yangtze River, China, b sampling area in Yibin reach
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invertebrates were obtained with a Pedersen dredge, and
all species were transferred into distilled water to allow
gut evacuation. We also collected a filter-feeding mussel
Limnoperna lacustris. Specimens of the same species
were combined for isotope analysis when the individ-
uals were not large enough to provide a sufficient sam-
ple (Karl et al. 2002). In the laboratory, each taxon was
identified and separated, and all samples were dried at
60 °C for at least 48 h and ground to a homogeneous
powder using a mortar and pestle.

The dominant food items in the stomachs of
L. elongata were classified into eight groups according
to the similarity of stable isotope values of food items,

fish, shrimp, gammarid, mollusks, aquatic insect larvae,
benthic invertebrates, plankton, and organic detritus,
and the proportion of each was estimated. The contribu-
tions of the dominant food items in the 67 tested spec-
imens were determined by IsoSource software. We used
the fractionation factors 1.0‰ for δ13C and 3.4‰ for
δ15N (Vander et al. 1999) to account for trophic
fractionation.

Stable carbon and nitrogen isotope ratios were ana-
lyzed with a continuous flow isotope ratio mass spec-
trometer (Delta V Advantage) directly coupled to an
elemental analyzer (flash EA1112 HT). The equations
to calculate δ13C and δ15N were:

δ13 C ‰ð Þ ¼ 13C=12C
� �

sample
= 13C=12C
� �

standard

� �
−1

h i
� 1 03

and δ15N ‰ð Þ ¼ 15N=14N
� �

sample=
15N=14N
� �

standard−1
h i

� 103; respectively:

13C/12C and 15N/14N are the ratios of the heavy
isotope to the light isotope of the sample or standard. δ
denoted stable isotope values of the sample as parts per
thousand (‰) difference from international standards.
The international standards were the Pee Dee Belemnite
for 13C and atmospheric N for δ15N. The samples were
expressed as δ13C and δ15N, and duplicates were run
every five samples with a mean standard error for δ13C
measurements below ±0.1‰ and for δ15N measure-
ments below ±0.2‰.

Statistical analyzes

The Kruskal-Wallis nonparametric rank test and χ2 test
of independence were used to assess the ontogenetic
differences in mean stomach fullness index (IF) and
percentage of empty stomachs (Zar 1984), respectively.
The PRIMER v. 5 package was used for cluster analysis,
and the Bray-Curtis similarity index was employed to
describe ontogenetic variations in diet composition
(Bray and Cyrtis 1957; Clarke and Warwick 2001).
Williams et al. (2001) reported that when diet data was
not normally distributed, non-parametric tests may be
employed to test the data.

The size-related effect on the C and N isotope signa-
tures of L. elongata collected from the spring was in-
vestigated using Pearson’s correlations, and Pearson’s
correlations were also used to determine the correlation
between δ13C and δ15N for all individuals in spring.

ANOVA was used to determine the isotope signatures
of the L. elongata individuals among seasons. All sta-
tistical tests were conducted with SPSS 16.0. A level of
p<0.05 was considered significant when the null hy-
pothesis was rejected (SPSS Inc., Chicago, USA).

Results

Diet composition

Of the 413 specimens collected in April (spring) 2012,
289 (69.98 %) had food in the stomach. Food items
were classified into eight groups, fish, shrimp,
Gammarid, mollusks, benthic invertebrates, aquatic in-
sect larvae, plankton and phytodetritus (Table 1).
Stomach contents of L. elongatawere composed mainly
of plankton, fish and shrimp in terms of IRI. The F%
was generally high, but the W% was low for benthic
invertebrates, aquatic insect larvae and plankton, where-
as both the F% and W% was high for fish and shrimp
(Table 1). The most important prey items of L. elongata
was plankton in terms of both F% (100 %) and N%
(99.99 %), and the IRI value was the highest among all
the prey items, whereas theW%value (0.071%)was the
lowest. But the fish was the most important prey in
terms of W%, and accounted for 44.54 % of the total
weight of stomach content, and followed by shrimp
(W%, 35.36 %).
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For isotopic analysis, 81 specimens of L. elongata
with body length from 84 mm to 405 mm were used
(Table 2). Sixty-seven specimens were used to analyze
the diet composition of the L. elongata by δ13C and
δ15N in spring, and a strong positive relationship was
observed between the δ13C and δ15N values (n=67, r=
0.734, P<0.01, Fig. 2). During the spring, the dominant
food items in L. elongata were classified into eight
groups: fish (Cobitidae, Saurogobio dabryi, Squalidus
argentatus, Ctenogobius girrinus, and Lepturichthys
fimbriata , body length 47–125 mm), shrimp
(Macrobrachium nipponense, body length 31–46 mm),
gammarid, mollusks (Limnoperna lacustris), aquatic
insect larvae (Ephemeroptera, Odonata, Chironomidae,

and Trichoptera), benthic invertebrates (Tubificidae,
caddis, clamworms, leeches), plankton (phytoplankton
and zooplankton), and organic detritus (Fig. 3). After
correction for isotope values of L. elongata, all individ-
uals fell within the irregular polygon delineated by the
site of each source (Fig. 3), confirming that we sampled
all major food items (Jonathan et al. 2006). The δ13C
and δ15N values of organic detritus were the lowest
(δ13C, −27.28±0.64‰; δ15N, 0.75±0.58‰) among all
potential food items, and the isotope values of shrimp
was similar to that the values of fish. For all the food
items, the δ13C values for L. elongata approached the
values of fish, shrimp and plankton (Fig. 3).

Diet variation and body length

The samples were divided into eight categories of body
length (Fig. 4). Fish exceeding 229 mm body length
were excluded, since the number of individuals collect-
ed was insufficient for analysis. Both the mean±S.E.
stomach fullness index (Kruskal-Wallis test, Hc=87.25,
p<0.001) and the percent of empty stomachs (χ2 test,
χ2=34.90, p<0.001) showed significant differences
among the categories (Fig. 4). The percent of
L. elongata with empty stomachs increased with body
length. The rates were the lowest at body lengths
<110 mm and highest when the body length ranged
from 210 to 229 mm (Fig. 4). The mean stomach full-
ness was lower when the body length <110 mm and
increased steeply with body lengths ranging from 110 to
129 mm, declining at body lengths >209 mm (Fig. 4).

Food items were separated into fish, shrimp,
gammarid, benthic invertebrates, aquatic insect larvae,
and others (mollusks, plankton, phytodetritus) for easy
analysis of percentage of total prey weight. The diet
composition showed significant differences among the
size classes in relative weight of prey items (Fig. 5).
Benthic invertebrates and aquatic insect larvae were the
primary prey for the smaller individuals (70–109 mm),
accounting for 60.75 % in fish of body length 70–
89 mm and 27.28 % for body length 90–109 mm. The
proportions of aquatic insect larvae were 31.81 % for
70–89 mm fish and 46.20 % for 90–109 mm fish. Fish
and shrimp were more important prey when body length
>109 mm, the lowest values were 38 and 34 % in
different size classes of the L. elongata, respectively.
Fish content was higher than that of shrimp when body
length ranged from 110 to 209 mm, with presence of

Table 1 Diet composition of Leptobotia elongata indicated by
percentage frequency of occurrence (F%), percentage weight
(W%), percentage numerical composition (N%) and index of
relative importance (IRI) in spring of 2012

Prey items F% W% N% IRI

Fish 36.68 44.54 <0.01 1633.76

Gobioninae 9.00 5.85 <0.01 52.65

Botiinae 17.99 30.90 <0.01 555.91

Homalopterinae 1.04 0.35 <0.01 0.36

Siluridae 1.04 1.08 <0.01 1.12

Gobiidae 2.08 1.93 <0.01 4.01

Unidentified fish 17.99 4.42 <0.01 79.52

Gammarid 23.88 2.95 <0.01 70.47

Shrimp 32.87 35.36 <0.01 1162.28

Mollusk 5.88 0.60 <0.01 3.53

Limnoperna lacustris 5.88 0.60 <0.01 3.53

Benthic invertebrates 30.80 8.52 <0.01 262.42

Hirudinea 27.68 7.76 <0.01 214.80

Oligochaeta 3.11 0.75 <0.01 2.33

Polychaeta 1.04 0.02 <0.01 0.02

Aquatic insect larvae 67.47 7.98 0.01 539.09

Odonata 7.96 3.70 <0.01 29.45

Ephemeroptera 58.48 1.85 <0.01 108.54

Trichoptera 6.92 2.13 <0.01 14.74

Chironomidae 10.04 0.02 <0.01 0.21

Corydalidae 2.08 0.0003 <0.01 <0.01

Unidentified aquatic insects 5.88 0.28 <0.01 1.65

Plankton 100.00 0.071 99.99 10006.00

Zooplankton 66.78 0.041 0.14 11.89

Phytoplankton 100.00 0.03 99.85 9988.20

Phytodetritus 6.92 0.034 <0.01 0.24
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fish significantly lower than that of shrimp when the
body length ranged from 210 to 229 mm (Fig. 5).

Cluster analysis based on percentage weight for the
eight size classes discriminated twomain groups, A: fish
70–109 mm and B: fish >109 mm (Fig. 6). The dissim-
ilarity between the two groups was 50.44 %. The aver-
age similarity among fish in group A and in group Bwas
81.28 and 89.62 %, respectively. The L. elongata in
group A mainly fed on aquatic insect larvae and benthic

invertebrates, and those in group B mainly fed on fish
and shrimp with shrimp the dominant prey of
L. elongate >209 mm.

For isotopic analysis, 67 specimens were used in
different size classes of L. elongata in spring (Fig. 2).
The samples were separated into eleven size classes.
The δ13C values for L. elongata ranged from −22.47
to −20.25‰, and showed a significant positive relation-
ship with increasing fish body length (n=67, r=0.594,

Table 2 The δ13C and δ15N of Leptobotia elongata from 2012 to 2013 in Yibin reach

Size classes
(mm)

Number Season (mean±SD)

Spring(n=67) Summer(n=5) Autumn(n=5) Winter(n=4)

δ13C(‰) δ15N(‰) δ13C(‰) δ15N(‰) δ13C(‰) δ15N(‰) δ13C(‰) δ15N(‰)

70–89 5 −21.54±0.19 8.48±0.49 — — — — — —

90–109 10 −21.60±0.50 8.95±0.66 — — — — — —

110–129 9 −21.01±0.46 9.91±0.48 — — — — — —

130–149 7 −20.96±0.49 9.78±0.53 — — — — — —

150–169 6 −20.72±0.37 9.90±0.22 — — — — — —

170–189 8 −20.80±0.52 9.87±0.41 — — — — — —

190–209 6 −20.84±0.57 10.10±0.49 — — — — — —

210–229 5 −20.55±0.20 10.59±0.33 — — — — — —

230–249 3 −20.52±0.07 10.60±0.21 — — — — — —

250–269 3 −20.50±0.15 10.61±0.04 — — — — — —

>270 5 −20.45±0.14 10.65±0.08 −23.49±0.22 11.44±0.20 −23.36±0.69 12.15±0.21 −21.39±0.18 9.83±0.22

B—^: No data

Fig. 2 Variations in δ13C and
δ15N signatures in spring (The
line represents the relationships
among the δ13C and δ15N values
(‰))
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p<0.01, Fig. 7). There were two points of increase of the
δ13C mean values in all size classes: The δ13C mean
values increased from −21.60‰ in the 90–109 mm
group to −21.01‰ in the 110–129 mm group and also
from −21.84‰ in the 190–209 mm group to −20.55‰
in the 210–229 mm group. The δ15N values varied from
7.81 to 10.95‰, and showed a significant positive rela-
tionship as the fish grew (n=67, r=0.705, p<0.01,
Fig. 7). The δ15N mean values also showed two points

of increase related to fish size. First, the δ15N mean
values increased from 8.95‰ in body length <109 mm
to 9.91‰ in body length 110–129 mm, as well as from
10.10‰ in body length 190–209 mm to 10.59‰ in
body length 210–229 mm (Table 2). We also investigat-
ed the proportional contribution of the food items in
different size classes in spring using IsoSource software,
and chose three feasible contribution values to express
the results, minimal values, MINV; maximum values,

Fig. 3 Stable isotope ratios (δ13C
and δ15N) of the dominant
potential food items (solid circles,
mean±SD) and Leptobotia
elongata (open circles, δ13C and
δ15N values of individuals) from
the Yibin reach in spring 2012

Fig. 4 Mean±S.E. of stomach
fullness and percent of empty
stomachs for each size class

Environ Biol Fish (2015) 98:1965–1978 1971



MAXV; mean values, MEANV). The feasible MINV
contribution of plankton to L. elongata averaged 28 %
to 56 % in the different size classes, and the MAXVof
feasible contribution averaged 40 % to 80 % (Table 3).
The MEANV of feasible contribution of plankton
ranged from 35.9 to 70.3 % (Fig. 8). The MINV of
feasible contribution of plankton was declined with
body length of L. elongata (Table 3). The MINV of
feasible contribution of fish and shrimp to L. elongata
was 0 in all size classes, while the MAXV ranged from

26 to 66 % and from 24 to 60 %, respectively. The
MAXV and MEANV of the feasible contribution of
shrimp and fish increased with body length increase
(Table 3, Fig. 8). The MINVof feasible contribution of
benthic invertebrates, gammarid, aquatic insect larvae,
mollusks, and organic detritus was also 0, and the
MAXV was lower than that of other food items fish,
shrimp, and plankton (Table 3). TheMEANVof feasible
contribution of benthic invertebrates, gammarid, aquatic
insect larvae, and organic detritus declined with body

Fig. 5 Variation in the diet composition indicated by percent weight of prey. F1: fish; F2: benthic invertebrates; F3: shrimp; F4: gammarid;
F5: aquatic insect larvae; F6: other)

Fig. 6 Dendrogram of the cluster analysis based on the percent mass values
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length increase from 90 to 109 mm to 110–129 mm:
benthic invertebrates, from 6.1 to 4.1 %; gammarid,
from 4.8 to 2.6 %; aquatic insect larvae, from 5.7 to
3.4 %; and organic detritus, from 5.3 to 2.2 %.

Diet variation and season

We chose similar size L. elongata to investigate whether
a seasonal dietary shift occurred by stable isotopes

Fig. 7 δ13C and δ15N signatures
in Leptobotia elongata according
to body length (mm) in spring a
δ13C of different body lengths; b
δ15N of different body lengths; c
δ13C and δ15N composition
(mean±S.D.) of different size
classes. The lines represent the
relationships among the isotopes
values (δ13C, δ15N) and body
length

Environ Biol Fish (2015) 98:1965–1978 1973



analysis. Nineteen specimens were analyzed in all sea-
sons: spring, n=5; summer, n=5; autumn, n=5; and
winter, n=4. Results showed that the isotopic composi-
tion of L. elongata was significantly different among
different seasons (Fig. 9). The δ13C values of

L. elongata in spring (−20.44±0.14‰) (Fig. 9), sum-
mer (−23.49±0.22‰), autumn (−23.36±0.69‰), and
winter (−21.39±0.18‰) showed significant differ-
ences by ANOVA (F=76.33, p<0.001). The δ13C
values in spring and winter were significantly higher

Table 3 The percent contribution of food items by IsoSource software for Leptobotia elongata in the Yibin reach (spring 2012)

Size classes
(mm)

The ratio of contribution of the food items

Shrimp Plankton Fish Benthic
invertebrates

Mollusk Aquatic insect
larvae

Gammarid Organic
detritus

Min.
%

Max.
%

Min.
%

Max.
%

Min.
%

Max.
%

Min.
%

Max. % Min.
%

Max.
%

Min.
%

Max.
%

Min.
%

Max.
%

Min.
%

Max.
%

70–89 0 26 56 80 0 24 0 24 0 16 0 24 0 20 0 16

90–109 0 40 38 72 0 36 0 36 0 26 0 30 0 24 0 20

110–129 0 56 30 56 0 50 0 24 0 20 0 20 0 16 0 14

130–149 0 52 36 58 0 46 0 20 0 18 0 18 0 14 0 12

150–169 0 50 42 56 0 46 0 12 0 10 0 10 0 8 0 6

170–189 0 50 40 56 0 44 0 14 0 14 0 14 0 10 0 8

190–209 0 58 30 52 0 52 0 18 0 16 0 16 0 12 0 10

210–229 0 64 28 42 0 60 0 12 0 12 0 10 0 8 0 6

230–249 0 66 28 40 0 60 0 12 0 10 0 10 0 8 0 6

250–269 0 66 28 40 0 60 0 12 0 10 0 10 0 8 0 6

>270 8 66 28 40 0 52 0 10 0 8 0 8 0 6 0 6

(min. minimum, max. maximum)

Fig. 8 Contribution of prey items in fish size classes in spring by IsoSource software (mean±SD)
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than those in summer and autumn, indicating that
L. elongata consumed more δ13C-rich food in winter
and spring. The δ15N values of L. elongata in spring
(10.65±0.08‰, n=5) (Fig. 9), summer (11.44±
0.20‰, n=5), autumn (12.15±0.21‰, n=5), and
winter (9.83±0.22‰, n=4) showed significant differ-
ences by ANOVA (F=144.56, p<0.001), indicating a
significant seasonal shift in diet. No significant rela-
tionship was observed between the values of δ13C
and δ15N in spring (r=−0.690, p>0.1, Fig. 10), summer
(r=−0.722, p>0.1, Fig. 10), autumn (r=−0.778, p>0.1,
Fig. 10), or winter (r=−0.621, p>0.1, Fig. 10).

Discussion

In studies of other reaches of the Yangtze, L. elongata
was shown to prey primarily on shrimp and fish (Ku
1999), so the stomach content analysis in the present
study are partial consistent with those results. Because
of those study only used Percentage frequency of oc-
currence (%F) to analyze the diet composition, so those
results might be biased. In the present study, the stomach
content analysis was consistent with the isotopic analy-
sis, which also indicated that L. elongata primarily feeds
on plankton, shrimp and fish.

Fig. 9 δ13C and δ15N
composition (mean±S.D.) in all
seasons (dot: spring; circle:
summer; filled triangle: autumn;
hollow triangle: winter)

Fig. 10 Variations in δ13C and
δ15N signatures among seasons.
The lines represent the
relationships between the δ13C
and δ15N values of Leptobotia
elongata in the seasons. (dot :
spring; circle: summer; filled
triangle: autumn; hollow triangle:
winter)
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The effect of size on the diet of L. elongata in the
Yibin reach has not previously been investigated.
Therefore, we could only compare the data of the stom-
ach content analysis to that of stable isotopic analysis
conducted in the present study. We investigated diet
shifts with a combination of stomach content and stable
isotopic analysis, the results demonstrated that the diet
shifts occurred when the body length of L. elongatawas
increased, which is consistent with findings for other
fish species (Bacha and Amara 2009; Eloranta et al.
2010; Santiago et al. 2010). Metabolic rate directly
impacts the food demand of fish (Moyle 2004) with
metabolic rate of larger individuals slower than that of
smaller individuals (Sims 1996). Hence, the results
show that small individuals of L. elongata show a lower
percent of empty stomachs.

L. elongata is an omnivorous species that the
small individuals primarily consume small-sized
prey such as plankton, benthic invertebrates, and
aquatic insects, with larger individuals feeding
mainly on shrimp and fish. Such a phenomenon
presumably reflects the morphological adaptations
of L. elongata. Santiago et al. (2010) found that
size-related shift in diet is probably related to mor-
phological limitations. And many reports show that
ontogenetic changes in the diet of fishes have been
related to changes in the size of the mouth (Schael
et al. 1991; Lucifora et al. 2000). Swimming speed
is also correlated with feeding of fish, and larger
pectoral fins are able to facilitate accurate and
stable feeding (Higham 2007). Larger individuals
are more active predators (Scharf et al. 2000) and
have larger pectoral fins relative to small individ-
uals in the same population. Thus, the fact that
L. elongata of different body lengths ingested prey
of different sizes may be related to morphological
characteristics and swimming speed.

The increased proportion of larger prey with larger
fish size may be related to the enhancing effect of
optimal foraging behavior on growth (Wanink and
Joordens 2007) and. reproduction. The caloric value of
prey partly depends on the size of the prey consumed
(Kikolsky 1963). The caloric content of plankton, ben-
thic invertebrates, and aquatic insect larvae is lower than
that of shrimp and fish. A major characteristic of
L. elongata is high growth rate (Chen 1980; Liang
et al. 2000), with sexual maturity reached when body
length is approximately 230 mm (Ku and Wen 1997).
Hence diet shift at body length >209 mm may be

related to reproduction. Protein-rich teleosts are
consumed by larger individuals to satisfy their
demands for energy (Santiago et al. 2010). Thus,
the size-related dietary shifts of L. elongata are
likely related to the demand for more energy re-
quired for the rapid growth and reproduction.

The size shifts in diet may also reflect the occupation
of different habitats for avoidance of intraspecific over-
lap in resource use (Schoener 1974). Some studies have
reported that small-sized brown trout mainly live in
littoral habitats, while larger individuals occupy the
pelagic zone (Hegge et al. 1993; Hesthagen et al.
1997), and larger individuals are more capable of mi-
gration across habitat boundaries for foraging (Grey
2001). Small anchovies occupy littoral habitats for more
favorable feeding and to reduce the risk of being preyed
upon (Bacha and Amara 2009). Ku (1999) found that
larger L. elongata individuals were mainly caught in the
middle zone of the river in spring, which is indirect
prove the results of the above-mentioned studies of
L. elongata. Smaller individuals of L. elongata probably
occupy primarily littoral habitats for more favorable
food sources and to reduce the risk of being preyed
upon, and larger individuals move into habitats further
from the littoral zone and often forage across the habitat
boundaries.

Because the number of larger individuals was not
sufficient, we chose individuals of similar size for the
diet analysis of different seasons. Significant seasonal
variations in δ13C and δ15N values of L. elongata were
observed in this study, and this phenomenon has also
been found in other fish (Eloranta et al. 2010; Zhou et al.
2011; Zhang et al. 2013). The δ13C values were the
highest in spring and the lowest in summer, and the
δ15N values in autumn were higher than any other
season and were lowest in winter, probably related to
the diet shift of L. elongata. Flood seasons occur in
summer and autumn, and spring and winter constitute
the dry season. Thus, the δ13C and δ15N values of
L. elongata showed clear differences between the flood
season and the dry season. The nutrient input and stable
isotope signatures of plankton have strong relationships
with hydrologic changes (Hein et al. 2003). The in-
creased anthropogenic input from the upper reaches of
the river during flooding changes the primary produc-
tivity and correspondingly increases heavy isotopes in
the environment (Xu et al. 2005; Benson et al. 2008).
Mook and Tan (1991) found that because of the
respiration of phytoplankton to reuse biogenic CO2,
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plankton show more δ13C depletion and more δ15N
abundance during the high-water seasons (Mook and
Tan 1991). Plankton and shrimp were found to be the
main energy sources for L. elongata in spring. The
seasonal changes in δ13C and δ15N values of
L. elongata probably had a strong relationship with
hydrologic changes.
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