MICROSATELLITE LETTERS

Development of 27 novel cross-species microsatellite markers for the endangered *Hucho bleekeri* using next-generation sequencing technology

Ke Wang · Shuhuan Zhang · Dengqiang Wang · Miaomiao Xin · Jinming Wu · Qingliang Sun · Hao Du · Chengyou Wang · Jun Huang · Qiwei Wei

Received: 11 September 2014/Accepted: 27 September 2014/Published online: 7 October 2014 © Springer Science+Business Media Dordrecht 2014

Abstract In this study, we developed 27 polymorphic microsatellite loci in *Hucho bleekeri*, a glacial relict and freshwater resident salmonid fish in China. The number of alleles varied from 2 to 8 for each primer set. The observed and expected heterozygosity ranged from 0.250 to 0.906 and 0.508 to 0.845, respectively. The polymorphic information content ranged from 0.371 to 0.808. These microsatellite loci should be useful to study population genetics, paternity identification, speciation and adaptive evolution of this lineage.

Keywords *Hucho bleekeri* · Microsatellite · Endangered species

Hucho bleekeri, a glacial relict and freshwater resident salmonid fish, is endemic to the Yangtze River drainage in China. It became a critically endangered species mainly due to over-fishing and habitat destruction since 1960s (Hu et al. 2008). A series of measures have been taken to protect this species such as listing it into China Red Data Book to ban on fishing and establishing a national nature reserve (Wang 1998). And recently it has been performed successfully controlled breeding, which has great significance to the species preservation. To better address the

Ke Wang and Shuhuan Zhang have contributed equally to this work.

K. Wang · Q. Wei (⊠) Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China

e-mail: 18672389096@163.com; weiqw@yfi.ac.cn

S. Zhang \cdot D. Wang \cdot M. Xin \cdot J. Wu \cdot Q. Sun \cdot H. Du \cdot C. Wang \cdot J. Huang \cdot Q. Wei

Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China

conservation status of the endangered species, a management programme based on genetics is being devised to define the efficiency of these conservation measures (Zhu et al. 2005). Despite the increasing demand for preservation and management plans, no suitable high resolution molecular markers have been available for this species. In current study, we report a set of polymorphic microsatellite loci for *H. bleekeri* that can serve as effective genetic markers for conducting further preservation and management in this endangered fish.

We used the microsatellite makers isolated from closely related species Brachymystax lenok, that had been constructed DNA Library by Ion PGMTM sequencer with Ion 318 chip kit v2 (Life tech LTD) in previous study (unpublished). 72 primer pairs were designed using Primer Premier 5.0 based on the flanking sequence of the repeat motifs. The polymorphisms of the loci were analyzed using a population of 24 wild individuals collected from Taibai River in Baoji City, Shaanxi Province, China. Total genomic DNA of H. bleekeri was extracted from tissue using the rapid salt-extraction method (Salah and Iciar 1997). The PCR amplification was carried out in a 25 μ L volume that contained $1 \times PCR$ buffer, 50–100 ng genomic DNA, 0.25 µM of each primer, 200 µM dNTPs, 0.5 mM MgCl₂, and 0.25 U Taq DNA polymerase (TaKaRa). The PCR cycle comprised an initial denaturation at 94 °C for 5 min, followed by 35 cycles of at 94 °C for 30 s, at the appropriate temperature (Table 1) for 30 s and extension at 72 °C for 60 s, and then 72 °C for 10 min. The PCR products were separated on 12 % non-denaturing polyacrylamide gel and visualized by silver staining. A 20-bp DNA ladder molecular weight marker (TaKaRa) was used as the standard to determine the size of the alleles.

Among these primer sets synthesized, only 27 sets showed clearly polymorphism (Table 1 and Appendix).

Locus	Repeat motifs	Primer sequence $(5'-3')$	Tm (°C)	Size range (bp)	Na	PIC	Но	He	<i>P</i> -HWE	Accession no.
BLT2	(AC)11	F: ATGACGCCACTATGAGACCG	60	230-310	4	0.681	0.656	0.742	0.018	KM051898
		R: CAGGAAGAAGAACCAGAACCA								
BLT4	(TG)11	F: TGAACAGACACTCACACAGGC	55	185-215	4	0.696	0.750	0.744	0.036	KM051900
		R: GTGTTTCAGCTGCTGCGTT								
BLT20	(GT)17	F: CCGTACTGCCTAGCAACACA	56	205-255	4	0.677	0.719	0.738	0.316	KM051916
		R: GGCTGTTTTCACAGAAAGGC								
BLT19	(CA)15	F: GTTCCTCTCTGTCCCCTTCC	55	133–185	5	0.718	0.818	0.792	0.009^{*}	KM051915
		R: AAACACCATGGAACTCGACC								
BLT6	(GT)13	F: CCCAGGTCTGGTGTCCAGTA	55	105-123	4	0.696	0.708	0.760	0.024	KM051902
	`	R: GTACCGCGCTCAGCTCAT								
BLT27	(TC)11	F: GGGCAAGGTGTTATGGCTAA	58	135–153	4	0.691	0.719	0.751	0.501	KM051923
	(-)	R: ATGAAACAGGTCCATAGCGG								
BLT28	(GT)18	F: CCCTACCAAGCACCAATACC	56	155-200	5	0.746	0.563	0.794	0.003^{*}	KM051924
	(0-)-0	R: TGATGTCAGGTTGCTTATTCAGA			-					
BLT25	(TG)14	F: AATGAAACCAGCTCATTGCC	56	160-200	3	0.534	0.300	0.647	0.008^{*}	KM051921
55120	(10)11	R: CAAGTCCTTCCAAATGGTCC	20	100 200	0	0.000	01200	01017	0.000	1111001/21
BLT30	(TG)14	F: CCGCTCACTTTGTTGACGTA	56	165-200	5	0 740	0 531	0 788	0.001^{*}	KM051926
22100	(10)11	R: CCCTGTCCAACCTCTCTCAG	20	100 200	U	017 10	01001	01700	0.001	1111001720
BLT16	(CA)17	F: ATCCAGTCAATAACCGCTGG	55	183-205	4	0.692	0.625	0 764	0.019	KM051912
DETTO	(011)17	R: CCTCGAGAAACTCGGTTGTT	55	105 205		0.072	0.020	0.701	0.019	100001712
BI T31	(AG)12	F: TGGATGGGTGTTACAAGCAA	56	90-100	3	0 505	0.833	0 594	0 142	KM051927
DEISI	(110)12	R: CAGATCTTGAGACAAAGAGCCA	50	90 100	5	0.505	0.055	0.574	0.142	1111031927
Hb11-101	(CA)13	F. TGTAATGTCACACACGCACG	55	190-240	4	0.673	0.625	0 742	0.220	км385538
11011 101	(011)15	R: CCAGACCAGAGGGGACTTCAA	55	190 210		0.075	0.020	0.7 12	0.220	11010000000
Hbl2_2	(TTA)10		57	140-174	5	0 741	0.625	0 789	0 199	км385539
11012 2	(111)10	R: AGGCTCACATTGGCTCGTAT	57	110 171	5	0.7 11	0.025	0.707	0.177	110100000000
Hb13-5	(TAA)11	F. TTGAAGTTGCCTTCTGGTCC	58	152-185	4	0 703	0 531	0 761	0.009*	KM385540
11015 5	(1111)11		50	152 105	-	0.705	0.551	0.701	0.00)	1101505540
Hbl4-10	$(\Delta TC)12$		56	215_240	5	0 737	0.688	0 784	0 194	KM385541
11014-10	(AIC)12	R: GACCTGGCTCTGGGTGATAG	50	213-240	5	0.757	0.000	0.704	0.174	KW1505541
Hb15-11	(TAT)11		58	140_210	4	0.676	0 594	0 739	0.005*	KM385542
11013-11	(171)11		50	140-210	-	0.070	0.574	0.757	0.005	KW1505572
ны6 240	$(\Lambda C)22$		55	140 180	6	0 808	0 531	0.845	0.001*	KM3855/3
11010-240	(AC)22	R: ATGCCATGTGTGTGTGTGTTT	55	140-100	0	0.000	0.551	0.045	0.001	KW1505545
HP12 200	(GT)14		56	100 160	6	0 781	0.680	0.821	0.134	KM385544
11017-290	(01)14		50	100-100	0	0.701	0.089	0.821	0.154	KW1303344
UL18 162	(CT)15		60	82 105	0	0.800	0.750	0 833	0.001*	VM285545
11010-105	(01)15		00	85-105	0	0.800	0.750	0.855	0.001	KW1365545
HP10 643	(TG)14		55	100 125	4	0 702	0.818	0 766	0.031	KM385546
11019-045	(10)14		55	100-125	4	0.702	0.010	0.700	0.031	KW1303340
Ub110-16	(TAA)10		56	155 185	5	0.740	0.710	0 706	0.063	VM285547
110110-10	(1AA)10		50	155-165	5	0.749	0.719	0.790	0.003	KW1363347
ПР11 21	$(\mathbf{T}\mathbf{C}\mathbf{A}\mathbf{T})10$		56	125 200	5	0.741	0.625	0 720	0.405	VN1205510
HUIII-21	(ICAI)10		50	123-200	5	0.741	0.025	0.789	0.495	KW303340
UL112 22	(10771)12		56	180, 220	r	0 271	0.250	0 500	0.026	VM205540
HU112-23	(AGTT)13		30	180-220	2	0.3/1	0.250	0.308	0.030	KIVI383349
11112 05			57	00 125	£	0 749	0.000	0.70/	0.074	VM205550
H0113-25	(1GAG)13	R: CTCTCAACCAACACACACCG	30	88-133	3	0.748	0.088	0.796	0.074	км383330

Table 1 Characterization of 27 polymorphic microsatellite loci in H. bleekeri

Table 1 continued										
Locus	Repeat motifs	Primer sequence $(5'-3')$	Tm (°C)	Size range (bp)	Na	PIC	Но	He	P-HWE	Accession no.
Hbl14-29	(TGTA)10	F: GAGGTGCACGTGTTCAAAGA R: TGGTTAAGACCAAGACCAACG	55	178–190	4	0.697	0.594	0.756	0.047	KM385551
Hbl15-31	(GTTA)10	F: GAGCTGGCTTGGTTGGTTAG R: GCACCAGTCTTCTTTTTCGG	57	120–200	5	0.727	0.906	0.778	0.010	KM385552
Hbl16-128	(GT)13	F: AGCCTGTCAGCACTGATGATT R: TGGTCTGGCCTATGAACACA	52	100–120	4	0.696	0.594	0.756	0.093	KM385553

Tm annealing temperature, *Size range (bp)* allele range, *Na* observed number of alleles, *PIC* polymorphic information content, *Ho* observed heterozygosity, *He* expected heterozygosity, *P-HWE* probability of Hardy-Weinberg equilibrium

* P < 0.01, significant departures from Hardy-Weinberg equilibrium

The polymorphic parameters, including the number of alleles (Na), observed heterozygosity (H_O), expected heterozygosity (H_E), and Hardy–Weinberg equilibrium (HWE) test, for each locus were performed using Popgen32 software. And the polymorphic information content (PIC) was calculated using PIC_CALC (Cheng et al. 2013). The number of alleles per locus varied from 2 to 8. H_O and H_E were 0.250–0.906 and 0.508–0.845, respectively (Table 1). The polymorphic information content (PIC) was 0.371–0.808 (Table 1). Eight loci (BLT19, BLT28, BLT25, BLT30, Hbl3-5, Hbl5-11, Hbl6-240, Hbl8-163) deviated significantly from the Hardy–Weinberg equilibrium (P < 0.01; Table 1). This is the first time to develop

polymorphic microsatellite markers for *H. bleekeri* and the markers are expected to be useful for further studies of genetic diversity and paternity identification.

Acknowledgments This work was supported by Special Fund for Agro-Scientific Research in the Public Interest (201203086) and open projects for Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China (No. LFBC0802). The fundamental Research Funds for the Central Public Research Institutes (2013JBFM19 and 2014A07XK05). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Appendix: Sequences of H. bleekeri

Accession no.	Locus	Sequence
KM051898	BLT2	ATGACGCCACTATGAGACCGGTCAAACATACACACACACA
KM051900	BLT4	TGAACAGACACTCACACAGGCTGATAAGAAGTACAGAAGATGAGAAGGTGTCCACACTTCATAGACT GAAAGGTCAGGAGTAAACAAAACA
KM051916	BLT20	CCGTACTGCCTAGCAACACGCAACTAGTAGAAAAAGTGTAAACATATATGTGATGTATTACGTGGTC ACTGTGGAATAACAGCTTGAAGTTTAG <mark>GTGTGTGTGTGTGTGTGTGTGTGTGTGT</mark>
KM051915	BLT19	GTTCCTCTCTGTCCCCTTCCCTTTGCATCTCTCTTCACACACA
KM051902	BLT6	CCCAGGTCTGGTGTCCAGTATGTCTGTCGTGTGTGTGTGT
KM051923	BLT27	GGGCAAGGTGTTATGGCTAAACTAAGCATAGTTTACAAATGTA ACACGTGTCATATTGTGTTGGTCCGCTATGGACCTGTTTCAT
KM051924	BLT28	CCCTACCAAGCACCAATACCTGATATAAAAGATATCAATGTTTGCTAAGCGAATTATGCTAATTGTAAT GCTTATATTCTATGTGTGTGTGTGCG <mark>GTGTGTGTGTGTGTGTGTGTGTGTG</mark>
KM051921	BLT25	AATGAAACCAGCTCATTGCCACACTTTGTCGGTTAAAACACCCTGTGTGTG
KM051926	BLT30	CCGCTCACTTTGTTGACGTAGATGTGTACGTTATTTGTTTCAAAATTATATCACAGGTCAACTGTATTGC TGCTTAAGTGAGCAGGTGAAGGCTGAGTTGTGTGTGTGTG
KM051912	BLT16	ATCCAGTCAATAACCGCTGGCCAGGGGAATAAAGAGATGGAGTTAGGGAAAGTGTAGAAAGGAAGG GAGTAGCACACATGCG <mark>CACAACACACACACACACACACACACACACACACAC</mark>
KM051927	BLT31	TGGATGGGTGTTACAAGCAATGTGGCAGAAGCTCCACATAGACCCAATCTAA <mark>AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG</mark>
KM385538	Hbl1-101	TGTAATGTCACACACGCACGCACGCACGCACGCACGCATG <mark>CACACACACACACACACACACACACACACAC</mark> CG AGTGTTGTCATTATCCATTACTTATTAGCTTACCTAACTTCGTTGCTAAAGTATAAAAGAATGAGATACC AAACTCGCTCGCAGGATTGGTTAACTC TTGAAGTCCCTCTGGTCTGG
KM385539	Hbl2-2	TCTAGTGCTGCATGTCTGCCTGGAGCAGGGTTTCCGGACATTTGACCTGCAATTTTATCTGCTTA G <mark>TTATTATTATTATTATTATTATTATTATTATTA</mark> TTTCAAAAGCCGGCTAAGCCAGCTAACAGAAACCCTAGCC TGCATACAGTGGCCCCATACGAGCCAATGTGAGCCT
KM385540	Hbl3-5	TTGAAGTTGCCTTCTGGTCCCAGCAATGGCATTGATAAAAGGTAACGTATTGTTTGT
KM385541	НЫ4-10	GACAACAGCTACAGGGCACAATAACGTTCTTTATTGATAAGGTTACAAACTCTTGACAAAGGCTTCAT CATATGCTTCATGCTTGGATTGATTGCTAATGAGCTAATGGTGAGTACTGACAATCAAGTTCAGGAATT CTCCTGAATTGAAATCTGCTCGAGCCTCAATTGTCAACTAAATGT <mark>ATCATCATCATCATCATCATCATCATCATCATCATCATCA</mark>
KM385542	Hbl5-11	TATGTGCCCAAAATGCTGTCCAATTTCAGCATGCTCCTAATGATGAAATATCTGTGGATTAGAATTATA <mark>T</mark> ATTATTATTATTATTATTATTATTATTATTATTATATATA
KM385543	Hb16-240	GGGGAATGCAGTTGAAATGTGT <mark>ACACACACACACACACACACACACACACACACACACAC</mark>
KM385544	Hb17-290	ACTCTGATCGCTACCTGGGGTGAGGCAGCAGCAGTCAAA <mark>GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT</mark>
KM385545	Hb18-163	GACTGGTGAGTCACAGGCAAGTCACCATGTTGCCATGGGA <mark>GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG</mark>
KM385546	Hbl9-643	GGCACAGCATGTCCCTTTTAGATGTGACATTGACACTCTTCGGTGTGTGT
км385547	ны10-16	ATCTCCACCATCTTGTCAGGAGAAACCTTCTTCTTCTTCCCTTTCTCTCTC

KM385548	Hb111-21	CATTAATCCATCCAACCATGCTA <mark>TCATTCATTCATTCATTCATTCATTCATTCATTCAT</mark>
KM385549	Hb112-23	AATGCTTATTCACGCGAGGTATGCTACATAATTACAGCAGTGCCACATGACAAGCATAATAACATCAGC CATTATGAACTGTGGGATCCAAATAAACA <mark>AGTTAGTTAGTTAGTTAGTTAGTTAGTTAGTTAGTTAG</mark>
KM385550	Hb113-25	TTTCACTGTGACCTGCTGCTGGTGACTATCAGGCAGTAAGGCAAGCTGTTGC <mark>TGAGTGAGTGAGTGAGTGA GTGAGTGAGTGAGTGAGTGA</mark>
KM385551	Hbl14-29	GAGGTGCACGTGTTCAAAGATGGAGCACTG <mark>TGTATGTATGTATGTATGTATGTATGTATGTATGTAT</mark>
KM385552	Hbl15-31	GAGCTGGCTTGGTTGGTTAGTTGGTTAGTTGGTTGGTTGG
KM385553	Hbl16-128	AGCGAGACAGAGCGATAGAGAGAAATAGAAAGAGAGAGAG

The orange parts are primers The highlighted parts are repetitive sequences

References

- Cheng W, Wang D, Du H, Zhang S, Wei Q (2013) Isolation and characterization of 23 microsatellite loci in the Chinese sucker (*Myxocyprinus asiaticus*). Conservation Genet Resour 5:375–377
- Hu M, Wang Y, Cao L, Xiong B (2008) Threatened fishes of the world: *Hucho bleekeri* Kimura, 1934 (Salmonidae). Environ Biol Fish 82:385–386
- Salah MA, Iciar M (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25(22):4692–4693
- Wang S (1998) China red data book of endangered animals-Pisces. Science Press, Beijing
- Zhu B, Liao X, Shao Z, Rosenthal H, Chang J (2005) Isolation and characterization of microsatellites in Chinese sturgeon, *Acipenser sinensis*. Mol Ecol Notes 5:888–892